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This is the final part of a three-part study of the stability of vertically oriented double-
diffusive interfaces having an imposed vertical stable temperature gradient. In this
study, flow is forced within a fluid of infinite extent by a prescribed excess of
compositionally buoyant material within a circular cylindrical interface. Compositional
diffusivity is ignored while thermal diffusivity and viscosity are finite. The instability of
the interface is determined by quantifying the exponential growth rate of a harmonic
deflection of infinitesimal amplitude. Attention is focused on the zonal wavenumber of
the fastest growing mode.

The interface is found to be unstable for some wavenumber for all values of the
Prandtl number and interface radius. The zonal wavenumber of the fastest growing
mode increases roughly linearly with interface radius, except for small values of the
Prandtl number (! 0.065). For small and moderate values of the radius, the preferred
mode is either axisymmetric or has zonal wavenumber of 1, representing a helical
instability. The growth rate of the fastest-growing mode is largest for interfaces having
radii of from 2 to 3 salt-finger lengths.

1. Introduction

This is the final part of a three-part study of vertically oriented double-diffusive
interfaces. The first part (Eltayeb & Loper 1991, hereinafter referred to as Part 1)
focused on the stability of a single plane interface, consisting of a sharp discontinuity
of composition and hence buoyancy, in an infinite extent of fluid having a stabilizing
thermal gradient. The fluid was subject to the combined action of thermal diffusivity
and viscosity, but compositional diffusivity was assumed negligibly small. It was found
that a small-amplitude harmonic distortion of the interface grows exponentially with
time for all values of the Prandtl number σ(¯ ν}κ, where ν is the viscosity and κ is the
thermal diffusivity). The fastest-growing mode has variation only in the vertical
direction for σ! 0.065, but is oblique to the vertical for σ" 0.065. The second part
(Eltayeb & Loper 1994, hereinafter referred to as Part 2) investigated the stability of
two parallel interfaces having equal and opposite compositional jumps, forming a slab
of buoyant material. This configuration will be referred to as the Cartesian plume in
what follows. Solutions to this problem can take one of two uncoupled forms: a
sinuous mode in which the small-amplitude harmonic distortions of the two interfaces
are in phase and a varicose mode having the distortions out of phase. Instability again
occurs for all values of the Prandtl number, with the fastest-growing mode of
instability being either sinuous oblique, varicose oblique, sinuous vertical or varicose
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vertical depending on the prescribed values of Prandtl number and interfacial
separation distance.

In this third part of the study we examine the stability of a circular cylindrical
interface. The present problem is more physically interesting than those studied in Part
1 and Part 2, as it represents more closely the fresh-water plumes in an aqueous
ammonium-chloride solution exhibited in figure 1 of Part 1 (see also Chen & Chen
1991; Hellawell, Sarazin & Steube 1993; Chen 1995; Worster 1997), as well as plumes
which arise in other situations. Most previous work on directional solidification deals
with the flows and stability of the mushy layer that develops between the solid and fluid
(see e.g. Chen 1995 and Worster 1997, and references therein). The stability of the
buoyant plumes that emanate from the mushy layer have not attracted much attention.
Hellawell et al. (1993) have performed an experimental study of the flow and
development of plumes in aqueous, metallic and organic alloys. They found that
plumes are, to a good approximation, in the form of vertical cylinders originating in
the permeable dendritic structure of the mushy layer. Their radii are fairly uniform, but
show a slight increase with height. As the solidification front rises, the plumes develop
instabilities at the top where they break-up and spread horizontally. In the case of
aqueous solutions these events take place rapidly but the time scale for organic
solutions is longer and provides better opportunities for observation.

This study was initially motivated by a desire to understand small-scale motions
in Earth’s core which are driven by compositional buoyancy generated during the
solidification of the inner core and are possibly associated with the dynamo process
which maintains Earth’s magnetic field (e.g. see Loper & Moffatt 1993; Moffatt &
Loper 1994). However, the results may be applicable to problems which arise in
metallurgy during the solidification of metallic alloys (Copley et al. 1970), in the
evolution of magma chambers (Jaupart & Tait 1995) and in the solidification of sea
water (Wettlauffer, Worster & Huppert 1996).

Of particular physical interest is identification of the circumstances in which the
instability having a zonal wavenumber of 1 may occur. This mode is preferred for the
cylindrical interfaces produced in the ammonium-chloride experiments. It should be
noted that this mode, in which the plume axis assumes a helical shape, has no clear
counterpart on the planar interfaces studied in Parts 1 and 2.

In what follows, we consider the stability of a vertical circular interface of radius s
!

surrounding compositionally buoyant fluid immersed in an infinite fluid which is
compositionally less buoyant. The temperature increases uniformly with height, giving
the fluid a uniform stable density profile ; see figure 1. This configuration, which we
shall refer to as the cylindrical plume, is very similar to that studied by Howard &
Veronis (1987, 1992) ; we are in effect considering their configuration but with a single
isolated plume of circular cross-section. As in their model and in Parts 1 and 2, material
diffusion is assumed negligibly small, while viscosity and thermal diffusion are
included. The conditions under which this assumption is valid are discussed in §5.4 of
Part 1.

The density, ρ, of the fluid is assumed to depend on the temperature, T, and the
concentration, C, of buoyant material through the linear relationship

ρ}ρ
!
¯ 1®α(T®T

!
)®β(C®C

!
), (1.1)

where α is the coefficient of thermal expansion, β is the coefficient of compositional
expansion and a subscript 0 denotes a constant reference value. The composition of the
ambient fluid is equal to C

!
while that within the interface is C

!
­C� . In what follows,

we shall assume that α, β and C� are constant and positive. In the absence of thermal
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F 1. A schematic representation of the physical configuration of the compositionally buoyant
plume. ρ

c
denotes the density with thermal effects ignored and T

b
denotes the background

temperature. The vertical temperature gradient is represented by γ.

diffusion, the jump in density across the interface would be compensated by an opposite
jump in temperature, making the density continuous and, in fact, uniform. However,
thermal diffusion across the interface smooths out the temperature jump, creating a
baroclinic density profile which drives vertical flow. The solutions for the radial
variation of temperature and vertical flow adjacent to the interface are expressed in
terms of Kelvin functions by formulas (1:3.20) and (1:3.21).†

The possible perturbations of the circular interface fall into three categories
depending on the value of the zonal wavenumber, q. For q¯ 0, the perturbation is
axisymmetric, representing a (local) change in size of the interface with no change of
shape. For q¯ 1, the interface is displaced laterally without change of size or shape.
If the direction of displacement varies in the vertical direction, the shape of the
interface is helical. For q& 2, the interface experiences a change of shape but not size.
It is clear from figure 1:1 that the helical mode q¯ 1 is preferred for a solution of
ammonium chloride and water. The helical mode appears to be preferred for a solution
of isopropanol and water (M. G. Worster, private communication), while the
axisymmetric mode q¯ 0 is seen by Wettlauffer et al. (1996) in their study of sodium
chloride and water. A primary goal of the analysis of this paper is to predict the zonal
wavenumber of the fastest-growing mode as a function of the Prandtl number and the
interface radius.

The formulation of the present problem, given in §2, follows closely that of Part 1
and Part 2, but the solution procedure employed here differs. As in Parts 1 and 2, the
flow variables are divided into three parts, consisting of a static background state, a
basic state associated with thermal diffusion across the undeformed interface and a
perturbation of infinitesimal amplitude associated with the harmonic deflection of the
interface (see (2.24) below). The forcing for the perturbed variables is measured by the
Reynolds number, R, which is proportional to the magnitude of the compositionally

† In what follows, equation (x\y) of Part 1 will be referred to as (1:x\y), figure z of Part 1 will be
referred to as figure 1:z and section x\y will be referred to as §1:x\y.
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induced density jump across the interface (see (2.5) and (2.6) below). Since the basic
state is baroclinic, there is no minimum critical Reynolds number; the flow is unstable
for any non-zero value of R. The amplitude of the perturbation variables, as well as the
temporal growth rate, are expanded in powers of R. It is anticipated that the most
unstable mode occurring for small values of R provides a ‘ template’ for the nonlinear
mode which is actually observed; this assumption is the essence of Landau’s theory of
nonlinear stability (e.g. see Drazin & Reid 1981, p. 370). If this assumption is correct
for the problem at hand, then the most unstable modes found herein should correlate
with the modes observed in the ammonium-chloride experiments, as well as in other
physical situations. In Part 2 it was found that to leading order, the growth rate was
proportional to R and imaginary, indicating a neutral oscillation. This neutral
oscillation is the obvious consequence of the requirement that the basic flow and
temperature confirm kinematically to the deformed interface. The real part of the
growth rate was found to be of order R#. The same situation occurs in the present
problem.

In Parts 1 and 2 the stability was determined by systematically solving analytically
the leading-order and first-order problems in powers of R for both flow variables and
growth rate. This procedure is straightforward, though somewhat tedious in the case
of two parallel interfaces. In the case of a cylindrical plume, this procedure cannot be
completed analytically because closed-form solutions of the non-homogeneous
equations for the first-order variables are not known. Rather than resorting to
numerical solution of the problem, an alternative analytic procedure is employed in §3.
In this procedure we abandon the attempt to find the perturbation variables to first
order, and concentrate on obtaining an expression for the real part of the growth rate
which contains only basic-state and leading-order perturbation variables. Since this is
a challenging and somewhat novel procedure, the analysis is presented in some detail
in an Appendix.

The result of the analysis of §3 is an expression for the growth rate of the disturbance
as a function of Prandtl number (σ), interface radius (s

!
) and the zonal (q) and vertical

(n) wavenumbers describing the harmonic perturbation. The expression is an integral
over radial distance, from the axis to infinity, which must be evaluated numerically.
The results of this evaluation are presented in §4. Specifically, the growth rate is
maximized over the two ‘ internal ’ variables q and n. Of particular interest is the value
of q associated with the maximum growth rate, as a function of σ and s

!
. These values

are presented on the ‘regime diagram’ in figure 4, and the special nature of the
axisymmetric and helical modes (having q¯ 0 and 1) is elucidated. Finally in §5 the
solution procedure and results are summarized, some comments are made regarding
the physical mechanism of instability and the limitations of the present model are
discussed.

2. Formulation

We consider the stability of the axisymmetric flow due to a vertical column of
compositionally buoyant liquid immersed within a stably stratified liquid. The buoyant
column is assumed to be circularly cylindrical, composition within it is assumed
uniform and diffusion of material is neglected. The aim of the analysis is to develop an
expression for the stability of this column when subject to harmonic perturbations of
infinitesimal amplitude.

For brevity, we shall present the governing equations only in dimensionless form;
for dimensional versions, the reader may refer to Part 1. The relevant equations are
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¥u}¥t­Ru[¡u¯®¡p­~#u­ρ}ρ
!
zW , (2.1)

¡[u¯ 0, (2.2)

σ(¥T}¥t­Ru[¡T )­u[zW ¯~#T, (2.3)

¥C}¥t­Ru[¡C¯ 0, (2.4)

plus (1.1). Here u is the fluid velocity vector and p is the pressure, and we have defined
the Prandtl and Reynolds numbers, respectively, by

σ¯ ν}κ, R¯UL}ν (2.5)

where ν is the kinematic viscosity, κ is the thermal diffusivity and L, U are units of
length and velocity associated with salt fingers, defined by

L¯ (νκ}αγg)"/%, U¯βC� (gκ}αγν)"/#. (2.6)

In these equations g is the acceleration due to gravity, γ is the uniform vertical
temperature gradient and βC� is the magnitude of the relative density deficit ∆ρ}ρ

!
of

the buoyant fluid. The temperature is scaled with βC� }α, the composition with C� and
the pressure with ρ

!
βC� (g$νκ}αγ)"/%.

We shall assume that the variables consist of a static background state denoted by
a subscript b, a basic state (driven by lateral diffusion of heat) denoted by an overbar
and a perturbation, denoted by a dagger :

u¯ωa zW ­εu†, C¯C
b
­C{ ­εC †, (2.7a, b)

T¯T
b
­Tz ­εT †, p¯ p

b
­pa­εp†, (2.7c, d )

where C
b

is a constant,
T
b
¯T

!
­(z®z

!
)}σR, (2.8)

and
p
b
¯ p

!
®(z®z

!
)}βC� ­(z®z

!
)#}2σR. (2.9)

The basic-state solutions associated with the cylindrical interface are given by
(1:3.17), (1 :3.20) and (1:3.21). Using formulas (9.9.1), (9.9.2), (9.9.16) and (9.9.17) of
Abramowitz & Stegun (1970), these may be expressed as

C{ (s ; s
!
)¯ 1®H(s®s

!
), pa (s ; s

!
)¯ 0, (2.10a, b)

wa (s ; s
!
)¯ Im[wh ], T{ (s ; s

!
)¯ Im[T� ], (2.10c, d )

where

wh ¯
1

2

3

4

ks
!
K «(ks

!
) I(ks) for s! s

!

ks
!
I «(ks

!
)K(ks) for s

!
! s,

(2.11)

T� ¯
1

2

3

4

®iks
!
K «(ks

!
) I(ks)®i for s ! s

!

®iks
!
I «(ks

!
)K(ks) for s

!
!s,

(2±12)

k¯ exp (iπ}4)¯ (1­i)}o2. (2.13)

Here H is the Heaviside step function, s is a cylindrical radial coordinate, s
!
is a free

parameter representing the (dimensionless) radius of the cylindrical plume, a prime
denotes differentiation and I and K are modified Bessel functions (of complex
argument).

The perturbations satisfy the homogeneous equations (1:2.16)–(1:2.18), i.e.

¡[u† ¯ 0, (2.14)

¥u†}¥t­R[wa (¥u†}¥z)­(u†[~wa ) zW ]¯®¡p†­~#u†­(T †­C †) zW , (2.15)

σ¥T †}¥t­σR[wa (¥T †}¥z)­u†[¡T{ ]­u†[zW ¯~#T †, (2.16)

¥C †}¥t­R[wa (¥C †}¥z)­u†[¡C{ ]¯ 0. (2.17)
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Note that the divergence of (2.15) gives

¡#p† ¯ ¥(T †®2Ru†[¡wa )}¥z. (2.18)

Equation (2.17) states that the composition of a parcel is preserved, as material
diffusion has been ignored. Consequently after radial deflection of the interface by a
small amount, η, the composition is given by

C{ ­εC † ¯ 1®H(s®s
!
®η). (2.19)

Combining this with (2.10a), we obtain

C † ¯
H(s®s

!
)®H(s®s

!
®η)

ε
. (2.20)

Since η¯O(ε), we see that C † behaves essentially as a delta-function forcing for the
problem, having a very large amplitude over a narrow radial range near s¯ s

!
. Outside

this narrow range, C † is equal to zero. If we were to use (2.20) as a forcing for the
problem, the perturbation solution would not be uniformly valid. However, due to the
large values of viscosity and thermal diffusivity compared with material diffusivity, the
temperature and flow variables respond only to the integrated effect of (2.20). Howard
& Veronis (1992) encountered a similar non-uniformity in their analysis of an array of
salt fingers, and got around the difficulty by using a smoothed salinity profile. We
adopt an alternative procedure, using (2.20) to develop a boundary condition on the
perturbation variables which permits a solution which is uniformly valid in s. This is
accomplished as follows. After subtracting the static and basic-state solutions, the
vertical component of the momentum equation becomes

¥#w†

¥s#
¯F †®C † (2.21)

where

F † ¯®
1

s

¥w†

¥s
®

1

s#

¥#w†

¥θ#

®
¥#w†

¥z#
­

¥w†

¥t
­Rwa

¥w†

¥z
­R(u†[¡) (wa ­εω†)­

¥p†

¥z
®T †. (2.22)

Let us integrate (2.21) from s¯ s
!
®δ to s¯ s

!
­η­δ, where δ is a radial distance much

smaller than ε. (We have assumed that η" 0 for definiteness ; the result is valid for
η! 0 as well.) Within this small interval, F † is of unit order, while C † is large, equal to
1}ε. Consequently we have

-¥w†

¥s .¯®
η

ε
­O(η), (2.23)

where © fª¯ f(s
!
­η­)®f(s

!
®). Equation (2.23) is a non-homogeneous boundary

condition which supplies the forcing for the problem. With η¯O(ε), the forcing in
(2.23) is of unit order, allowing the solution to be uniformly valid in s. In what follows
we shall set C † equal to zero and employ condition (2.23).

If we introduce a cylindrical coordinate system s, θ, z and write

and
²u†, p†,T † ´¯ ²iu, �,w, inp,T ´ exp [i(qθ­nz)­Ωt]­c.c.

η¯ ε exp [i(qθ­nz)­Ωt]­c.c.,

5

6

7

8

(2.24)

the equations governing the perturbation variables maybe expressed in component
form as

d(su)}ds­q�­nsw¯ 0, (2.25)

s#L(�)®�®Ω{ s#�¯®qnsp­2qu, (2.26)

L(w)®Ω{ w¯ iR(dwa }ds) u®n#p®T, (2.27)

L(T )®σΩ{ T¯w­iσR(dT{ }ds) u, (2.28)
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and
L(p)¯T®2iR(dwa }ds) u, (2.29)

where

L¯
d#

ds#
­

d

sds
®

q#

s#
®n# (2.30)

and
Ω{ ¯Ω­inRwa . (2.31)

The set of equations (2.25)–(2.29) is to be solved subject to the following conditions:

at s¯ 0 the perturbation functions are analytic ; (2.32)

at s¯ s
!

u, �, w, p, T, d�}ds and dt}ds are continuous, (2.33)

©dw}dsª¯®1, (2.34)

©dp}dsª¯ 1 (2.35)
and

Ru¯®iΩ{ ; (2.36)

as sU¢ the perturbation functions decay to zero. (2.37)

where now
©zª¯ z(s

!
­)®z(s

!
®). (2.38)

Condition (2.34) is the normalized version of (2.23) and condition (2.35) may be verified
by combining the s-derivative of (2.25) with the radial component of (2.15) and the
remaining conditions.

Here Ω is the growth rate of the perturbation; if Re(Ω)" 0, instability occurs. Note
that wa , T{ , and Ω{ are functions of s. The problem becomes equivalent to that studied
in Part 1 in the limit s

!
U¢. Specifically if we let s¯ s

!
­x, q¯ s

!
m, and take the limit

s
!
U¢, equations (2.25)–(2.29) reduce to (1:4.3), (1 :4.5)–(1:4.7) and (1:4.13).
The problem stated by (2.25)–(2.37) has symmetry properties similar to those of the

Cartesian plume studied in Part 2. The basic-state functions wa and T{ are even functions
of s and their derivatives are odd, and the operator L preserves symmetry. It follows
that the problem has solutions of even parity, in which w, p and T are even in s and
u and � are odd, and odd parity, in which w, p and T are odd in s and u and � are even.
Note the difference in the symmetry of the horizontal velocity component parallel to
the interface, �, in the cylindrical plume from that for the Cartesian plume. These
symmetries are of use in simplifying the problem of the Cartesian plume because
deflections of the two interfaces are decoupled in that problem. Since the cylindrical
problem involves a single interface, these symmetry properties do not lead to any
simplification.

It should also be noted that the axisymmetric case, having q¯ 0, behaves differently
from the non-axisymmetric cases, having q" 1. In the axisymmetric case, the
perturbation functions can have non-zero values at s¯ 0, whereas in the non-
axisymmetric case, single-valuedness requires that perturbations be zero at the axis.

We are interested in finding the behaviour of the system in the limit of small R. In
this case it is natural to write

²u, �,w, p,T ´¯ 3
¢

α=!

²uα, �α,wα, pα,Tα´R
α, Ω¯ 3

¢

α="

Ωα Rα. (2.39)

Upon substitution of this ansatz into the governing equations, we obtain a sequence
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of problems, ordered in powers of R. Stability of the plume is determined by the first
of the sequence Ωα which has a non-zero real part. As it happens, Ω

"
is imaginary, and

we need to determine Ω
#
. Expression for Ω

"
and Ω

#
are presented in the next section.

3. Solution of the stability problem

In this section we summarize the solutions of the sets of equations corresponding to
the first two terms in the expansions (2.39). We shall refer to the leading-order set of
equations and boundary conditions as Problem 0 and the first-order set as Problem 1.

3.1. Problem 0

Upon substitution of (2.39) into (2.25)–(2.29), the dominant-order equations are
obtained:

d(su
!
)}ds­q�

!
¯®nsw

!
, (3.1)

s#L(�
!
)®�

!
®2qu

!
¯®qnsp

!
, (3.2)

L(w
!
)­n#p

!
­T

!
¯ 0, (3.3)

L(T
!
)®w

!
¯ 0 (3.4)

and
L(p

!
)®T

!
¯ 0. (3.5)

These equations are to be solved subject to the boundary conditions obtained from
(2.32)–(2.35) and (2.37) by attaching a subscript 0 to all the relevant variables ; using
(2.31) condition (2.36) becomes

at s¯ s
!

u
!
¯®iΩ

"
­nwa . (3.6)

The solutions may be expressed as

²w
!
, p

!
,T

!
´¯ s

!
3
$

j="

²µ$
j
,µ

j
,µ#

j
´B

j
R

j
, (3.7)

u
!
¯ ns

!
3
$

j="

B
j
ξ
j

1

2

3

4

K
q
(ξ

j
s
!
) I!

q
(ξ

j
s) for 0! s! s

!

I
q
(ξ

j
s
!
)K!

q
(ξ

j
s) for s

!
! s,

(3.8)

�
!
¯®

nqs
!

s 3
$

j="

B
j
R

j
, (3.9)

where

R
j
¯

1

2

3

4

K
q
(ξ

j
s
!
) I

q
(ξ

j
s) for 0! s! s

!

I
q
(ξ

j
s
!
)K

q
(ξ

j
s) for s

!
! s,

(3.10)

B
j
¯

µ#
j

3n#­2µ
j

, (3.11)

ξ#
j
¯µ

j
­n#, (3.12)

and µ
j
are solutions of

µ$­µ­n#¯ 0. (3.13)

The growth rate of the perturbation to dominant order may be determined from
(3.6). Using (2.11) and (3.8) we have

Ω
"
¯ ins

! (3$
j="

K
j
ξ
j
I!
q
(ξ

j
s
!
) I

q
(ξ

j
s
!
)®Im [kI «(ks

!
)K(ks

!
)]* . (3.14)
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The expression in the curly brackets is real and consequently Ω
"
is imaginary. We will

see later that Ω
#

is real so that the phase speeds in the vertical and zonal directions,
U
z
, Uθ, respectively, correct to order R#, are given by

U
z
¯ iΩ

"
}n, Uθ ¯ iΩ

"
s
!
}q. (3.15)

These functions are plotted in figures 2 and 3 are discussed in §4.

3.2. Problem 1

We now consider the first-order set of equations and boundary conditions in order to
determine the growth rate Ω

#
. Previously, for the problems of the single plane interface

and two parallel interfaces, this was accomplished by solving the first-order problem
in full. This is a formidable analytical task in the Cartesian cases, and appears to be
insurmountable in the cylindrical case, suggesting that a numerical solution is in order.
However, it is possible to find Ω

#
by means of a compatibility or solvability integral

which involves only zeroth-order quantities, thereby circumventing the need to solve
the full first-order problem. This procedure is similar to that leading to a standard
solvability condition for a perturbed eigenvalue problem, except that the analysis is
considerably more complicated in the present case. This process, which is presented in
the Appendix, has been employed to re-solve the problems of the single plane interface
and two parallel interfaces and has yielded identical results of those in Part 1 and Part
2. Copies of these calculations are available from either author on request.

The solvability integral is

Ω
#
¯&

¢

!

9dwa
ds 0

q#R
n

s
®

dH
n

ds 1®n(iΩ
"
®nwa )H

n:3$
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j
R

j

3n#­2µ
j

sds

®
i
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¢

!
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w
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n
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j
)F

p
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w
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j
F
T
]

n#H
j

3n#­2µ
j

* s

s
!

ds, (3.16)

where
F
p
¯®2i(dwa }ds) u

!
, (3.17)

F
w

¯ i(dwa }ds) u
!
­(Ω

"
­inwa )w

!
, (3.18)

F
T
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Ω
"
is given by (3.14), µ

j
are solutions of (3.13), the leading-order variables are given by

(3.7)–(3.9) and the basic-state variables by (2.10)–(2.12). Formula (3.16) is the desired
representation of Ω

#
in terms of integrals of leading-order and basic-state quantities,

which is quantified and discussed in the next section.

4. Evaluation and discussion of growth rates

The cylindrical interface is unstable to a harmonic perturbation of infinitesimal
amplitude if the real part of Ω is positive. Ω is a function of the zonal and vertical
wavenumbers, q and n, which are internal variables, and three external variables : the
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F 2. Isoline plots of the zonal phase speed, Uθ, on the (s
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, n)-plane for (a) q¯ 1,

(b) 2 and (c) 3. The contour interval is 0.02.

Prandtl number σ, the interface radius s
!
and the Reynolds number R. Since the basic

state is baroclinic, there is no minimum critical value of R ; the stability analysis has
been simplified by expanding Ω in a Taylor series in powers of R. Due to the scaling
adopted, there is no zeroth-order term and the series begins like

Ω(s
!
,σ,R ; q, n)¯Ω

"
(s

!
; q, n)R­Ω

#
(s

!
,σ ; q, n)R#­… . (4.1)

We found in §3, as in Parts 1 and 2, that Ω
"
is imaginary and Ω

#
is real. The result that

Ω
"
is imaginary is expected on physical grounds; this and the associated leading-order

perturbation variables represent the neutral deflection of the basic-state flow to
accommodate the harmonic deflection of the interface. In the following subsections, we
shall discuss the nature of the functions Ω

"
and Ω

#
for the cylindrical interface.

4.1. Discussion of Ω
"

The structure of the mathematical problem is such that the function Ω
"
, given by (3.14),

does not depend on σ : it is a function only of s
!
, q and n. Of more interest than Ω

"
itself

are the two associated phase speeds Uθ and U
z
, given by (3.15). Isolines of these speeds

are plotted in figures 2 and 3. Figures 2(a)–2(c) present a sequence of isoline plots of
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Uθ on the (s
!
, n)-plane for q¯ 1, 2 and 3. Note that the zonal phase speed is not defined

for the axisymmetric case q¯ 0. From these plots we see that the zonal phase speed is
approximately linear in n, decreases for increasing q, is zero for s

!
¯ 0, is largest for s

!
near 1 and asymptotes to a finite value with increasing values of s

!
. The case of the

single plane interface studied in Part 1 is obtained by taking the double limit of qU¢
and s

!
U¢ with their ratio being of unit order ; in this limit, Uθ U 0. Similarly, figures

3(a)–3(d ) present a sequence of isoline plots of U
z
on the (s

!
, n)-plane for q¯ 0, 1, 2

and 3. From these plots we see that the vertical phase speed is approximately
independent of n, decreases moderately for increasing q, is zero for s

!
¯ 0, is largest for

s
!

near 1 and decreases in magnitude with increasing values of s
!
.

4.2. Discussion of Ω
#

The perturbation growth rate, Ω
#
, given as an integral in (3.16), is a function of s

!
, σ,

q and n. It has been verified by asymptotic analysis that in the limit s
!
U¢ this

expression becomes equal to that found in Part 1. As in Parts 1 and 2, Ω
#

is a linear
function of σ, although we have not taken advantage of this property in the
calculations or discussions. We are primarily interested in the largest growth rate for
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F 4. The q-regime diagram, showing the regions on the (s
!
,σ)-plane for which

a specified value of q yields the fastest growing mode.

specified values of s
!
and σ, obtained by maximizing the expression in (3.16) over all

possible values of q and n. The values of q and n which achieve the maximum
will be referred to as the ‘preferred mode’. The principal result of this exercise is a
regime diagram given in figure 4, which shows the zonal wavenumber of the preferred
mode on the (s

!
,σ)-plane for values of s

!
up to 16 and σ up to 8. A region of this plane

for which a particular value of q yields the largest growth rate will be referred to as a
‘q-regime’ ; the locations of these regimes are indicated on figure 4. This diagram
reveals that the preferred zonal wavenumber increases approximately linearly with
increasing s

!
. This is expected since, as noted in §2, qCms

!
for s

!
large, with m (¯m

max
)

given as a function of σ in figure 1:12. The change in s
!
associated with a unit increase

in q is given by

∆s
!
¯

1

m
max

(σ)
. (4.2)

Since m
max

is an increasing function of σ, the interval ∆s
!
is a decreasing function of

σ. This is manifest in the increasing tilt with increasing values of s
!
for moderate and

large values of σ of the lines bounding q regimes in figure 4.
Since m

max
goes smoothly to zero for a finite value of σ (E 0.065) in figure 1:12, it

follows that the interval ∆s
!
goes to infinity as this value of σ is approached from above

in figure 4. This is manifest in the lines bounding different q-regimes asymptoting to the
line σ¯ 0.065 in figure 4. The pattern of q-regimes seen for moderate and large s

!
is

broken for small s
!
, where a ‘hanging q¯ 1 mode’ occurs. It is a difficult question

whether this is the result of a novel q¯ 1 mode dominant at large σ intruding into the
q¯ 0 regime or else an expansion of the q¯ 0 region dominant for small σ into the
q¯ 1 regime, dividing it in two. Perhaps some light can be shed on this question by
comparing the regime diagram for the cylindrical plume given in figure 4 to that for the
Cartesian plume given in figure 2:11. In order to make this comparison, the four
categories of modes identified for the Cartesian plume must be related to those possible
for the cylindrical plume. In Part 2, a vertical mode is one for which the zonal
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versus s
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(b) 1, (c) 5 and (d ) ¢. Note that Ω

#max
}σ is plotted in (d ). The numbers next to the curve segments

refer to the values of q which yield the maximum, with solid-line segments associated with even values
of q and dotted-line segments associated with odd. Note that the maximum growth rate occurs for
s
!

between 2 and 3 and for q¯ 0 or 1 for all values of σ.

Cartesian mode Cylindrical mode

Varicose vertical q¯ 0
Varicose oblique q even
Sinuous vertical Not possible
Sinuous oblique q odd

T 1. Translation of modes from Cartesian to cylindrical

wavenumber is zero. This obviously translates to the mode q¯ 0. By the same token,
oblique modes translate into those having q" 0. We shall associate the varicose
(sinuous) modes of the Cartesian plume with the cylindrical-plume modes having
opposite (same) values of interface deflection at opposite ends of a diameter.
This interpretation means that all modes having q even are varicose and
those having q odd are sinuous. This interpretation is most clearly evident for the
modes q¯ 0 and q¯ 1. This translation is summarized in table 1. Note that the
interfaces are sufficiently decoupled in the Cartesian case to permit the existence of the
sinuous vertical mode, but this is not possible in the cylindrical case due to the zonal
coupling of the interfaces on opposite ends of a diameter.
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With table 1, we are in a position to compare figure 4 here with figure 2:11. First,
we see that the varicose vertical (Vv) mode, which is dominant for small values of s

!
and σ in the Cartesian case is equivalent to the q¯ 0 regime seen at small values of s

!
and σ in figure 4. Next, the sinuous oblique (So) mode seen at small values of s

!
and

moderate values of σ in figure 2:11 has a counterpart in the hanging q¯ 1 mode of
figure 4. The sinuous vertical (Sv) mode of figure 2:11 cannot exist for the cylindrical
plume. In figure 4, the comparable region is occupied, at least for moderate and large
values of σ, by the q¯ 0 mode, which is equivalent to a Vv Cartesian mode. In the
Cartesian case, there are only two types of oblique modes, varicose and sinuous, due
to the weak coupling between the two interfaces. In the cylindrical case, there is an
infinite sequence of oblique modes identified by the value of q. This gives figure 4 a
distinctly different appearance for moderate and large values of s

!
from that of figure

2:11. However, the generic similarity between the two is evident : the modes are oblique
and the distinction is only in the zonal phase.

It is of some interest to quantify the values of Ω
#

obtained by the maximization
process which led to the regime diagram of figure 4. This is done in figure 5, which plots
the maximized growth rate, Ω

#max
, versus s

!
for selected values of σ : 0, 1, 5 and ¢ in

parts (a), (b), (c) and (d ), respectively. Note that in part (d ) the variable displayed is
Ω

#max
}σ. In these plots, even values of q are indicated by solid lines and odd values by

dotted lines, with the associated values of q indicated by the adjacent numbers. Except
for the case σ¯ 0 seen in part (a), the preferred value of q increases with increasing s

!
.

In the case σ¯ 0, the preferred value does not exceed 2, and as s
!
becomes large the

preferred value reverts to 0, in agreement with the results in Part 1. In each of the four
cases shown in figure 5 the growth rate is zero for s

!
¯ 0, peaks sharply for s

!
slightly

larger than 2 and asymptotes to a constant value for large s
!
. These asymptotic values

agree with those shown in figure 1:12. Note that the strength of the instability is largest
for values of cylinder radius close to the value which maximizes the buoyancy flux; see
figure 1:7. Note also that the most rapidly growing modes have a preferred zonal
wavenumber of either 0 or 1, suggesting that these modes behave anomalously.

The special character of the axisymmetric and helical modes are seen more clearly
in figure 6(a), which is a repetition of figure 5(b), but with all the modal lines shown,
not merely the largest. From this we see (i) that the maximum growth rate of modes
varies inversely with the zonal wavenumber except for the helical mode, (ii) that modes
with q¯ 0 and 1 have growth rates significantly larger than those having q& 2 and (iii)
the growth rate of the helical mode is anomalously large. Figure 6(b) shows a
comparable variation of growth rate with plume size for the sinuous mode of the
Cartesian plume for various values of the transverse wavenumber; the varicose mode
exhibits similar behaviour. In this case, no anomalous variation is seen, indicating that
the geometry of the plume (two-dimensional vs. cylindrical) plays an important role in
the nature of the instability.

It is seen from figure 5 that the fastest growing mode has a zonal wavenumber
q¯ 1 for small values of the Prandtl number, σ, and q¯ 0 for moderate values of σ. The
appropriate value of σ for the ammonium-chloride experiment is not clear, as the
Prandtl number of water varies by at least a factor of 2 for the temperature range of
that experiment (see Appendix 1 of Batchelor 1967). Wettlauffer et al. (1996) observed
plume instability with q¯ 0 during the freezing of sea ice. Since the Prandtl number
of cold water (in the sea-ice experiment) is higher than that of warm water (in the
ammonium-chloride experiment) and our theory predicts q for the fastest growing
mode to decrease with increasing σ, the differing character of instability observed in the
two experiments is compatible with the results of the present theory. This discussion
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versus s
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cylindrical plume and (b) a Cartesian plume with varicose instability. Note the anomalously large
growth rate of the q¯ 1 mode in the cylindrical case. The kinks appearing in some of the curves are
real ; there is a jump in the preferred vertical wavenumber at the kinks.

highlights the need for an improved theory of plume instability which takes into
account the variability of Prandtl number with temperature.

The vertical wavenumber, n
max

, associated with the maximized growth rate is plotted
versus s

!
for selected values of σ : 0, 1, 5 and ¢ in figures 7(a)–7(d ). These plots are

discontinuous since the value of n changes depending on the value of q. The numbers
adjacent to the segments of curves give the preferred value of q associated with each
segment. The values of n

max
are all of unit order, but there is no clear pattern in the
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trend either as a function of s
!
or σ, excepting that the values for q¯ 0 are consistently

larger than for q¯ 1. The asymptotic values n
max

in the limit of s
!
U¢ as a function

of σ approach the function shown in figure 1:12.

5. Summary and concluding remarks

5.1. Summary

The linear stability of a circular interface, enclosing compositionally buoyant material
in a thermally stably stratified fluid, has been investigated. Material diffusivity is
neglected, so that the interface remains sharp and identifiable. A density jump is
assumed to accompany the jump in composition and this acts to drive vertical motion
parallel to the unperturbed interface. This motion advects the heat vertically, causing
a local change in temperature which is balanced by radial diffusion of heat in the
unperturbed state. We have investigated the stability of this basic state as the circular
interface experiences small-amplitude harmonic distortion characterized by a zonal
wavenumber q (restricted to integer values) and vertical wavenumber n.

The strength of the density jump driving the flow and instability is characterized by
the Reynolds number, R¯UL}ν where L and U are the units of length and velocity
associated with salt fingers : L¯ (νκ}αγ)"/% and U¯βC� (gκ}αγν)"/#. Since the basic
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state is baroclinic, there is no minimum critical Reynolds number. The stability
analysis has been performed assuming that R' 1, with the dependent variables and the
growth rate being expanded in powers of R. As in the cases of the single flat interface
and two parallel interfaces studies in Parts 1 and 2, the dominant-order term (of order
R) in the expansion of the growth rate is imaginary, indicating an oscillation, and
stability of the interface is determined by the second term (of order R#) in the
expansion. In the Cartesian analyses of Part 1 and Part 2 the growth rate to order R#

was evaluated by a straightforward (though complicated) analytic solution of the
perturbation problem at dominant and next order in powers of R. This procedure fails
for the cylindrical plume, and an alternative procedure has been developed in which the
growth rate is expressed as an integral involving only the basic-state and dominant-
order perturbation variables.

It is found that basic state and the interface shape are unstable for some wavenumber
for all values of Prandtl number, σ, and interface radius, s

!
. The preferred zonal

wavenumber grows roughly linearly with s
!

except for small values of σ : σ! 0.065.
The preferred vertical wavenumber remains of unit order for all values of s

!
and σ. The

growth rate is largest for s
!

slightly larger than 2 and for modes having zonal
wavenumbers q¯ 0 or 1.

The instability has the appearance of an overstable oscillation. The dimensional
phase speeds in the zonal and vertical directions are of order U, with an associated
period of oscillation of order

τ
osc

¯
L

U
¯

ν

U #

¯
νρ

(∆ρ)
c
gL

, (5.1)

while the time scale of growth is

τ
grow

¯
L

UR
¯

ν

U #

¯ 9 νρ

(∆ρ)
c

:# α

κg 0
dT

dz 1 . (5.2)

Here (∆ρ)
c
is the jump in density associated with the prescribed jump in composition.

5.2. Comments on the physical cause of the instability

As noted previously, the most unstable mode of a cylindrical interface is helical (having
zonal wavenumber 1) for small Prandtl number and axisymmetric (q¯ 0) for large.
We shall attempt to explain this behaviour physically in this subsection. The
explanation will be based on the assumption that a plume of compositionally buoyant
material seeks to be as vigorous as possible, with vigour being quantified by buoyancy
flux (see §1:3.4).

Vertical motion of fluid within the interface is driven by its compositional buoyancy
and retarded by both thermal buoyancy and viscous drag. The vigour of this motion
can be increased by increasing the rate of heat transfer across the interface and by
decreasing the amount of viscous drag. In the limit of small Prandtl number, thermal
diffusion occurs readily and the limiting factor is the viscous drag, while in the limit of
large Prandtl number, thermal diffusion is weak and hence is the limiting factor. These
two limits may be seen mathematically in the perturbation equations (A 1)–(A 11) of
the Appendix; in the limit σ' 1, the forcing is dominantly mechanical while if 1'σ,
it is dominantly thermal. (Given the above argument, the reader might wonder why a
solution to the problem can exist at all in the limit of σU¢, since thermal diffusion
becomes arbitrarily small in that limit. The answer is that the physical length and
velocity scales are dependent on the magnitude of the thermal diffusivity (see (2.6)) and
these indeed become small in this limit.)
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It may be seen from the basic-state solution (2.10)–(2.11) that viscous drag on the
fluid contained by the interface is caused by the surrounding collar of fluid which
moves in the opposite direction. This drag is diminished if the counterflowing fluids are
in less immediate contact. This diminution is accomplished by the helical instability,
having q¯ 1, which shifts the counterflow to one side of the interface. (The upward
flow in the plume and the downward counterflow in fully developed helical flow may
be visualized as the strands of a two-stranded rope.) This mode of instability is to be
preferred when viscosity is the limiting factor : when the Prandtl number is small. Note
that this mode of instability appears to have no counterpart in the case of planar
interfaces studied in Parts 1 and 2.

Plume vigour is increased by increasing the diffusion of heat across the interface,
which may be accomplished by increasing the surface area of the interface. This
increase is accomplished most readily by the axisymmetric instability, having q¯ 0,
coupled with a large vertical wavenumber. This mode should be preferred when
thermal diffusion is the limiting factor : when the Prandtl number is large. It may be
seen from figure 7 that the vertical wavenumber for q¯ 0 is systematically larger than
that for q¯ 1, lending support to the present heuristic argument.

These arguments assume that the radius of the cylindrical interface is close to the
value which maximizes buoyancy flux. If the radius is significantly larger, the preferred
mode has a wavenumber greater than unity, as seen in figure 4. If q1 1, the instability
appears ineffective in reducing its viscous drag, and enhancement of the vigour of the
plume is likely accomplished by increasing thermal diffusion.

5.3. Some limitations of the present model

As noted in §4.2, the present model, with its assumption of constant Prandtl number,
may not be accurate for an aqueous solution if the temperature variations experienced
are large, of order several tens of degrees centigrade. The principal cause of the
variation of Prandtl number is the variation of the dynamic viscosity with temperature.
An improved model should take this variation into account.

One motivation of the present study is the desire to understand better the nature of
the small-scale compositionally driven flow which may occur within Earth’s core in
association with the operation of the geodynamo. An obvious shortcoming of the
present analysis is that it ignores the effects of rotation and magnetic fields which are
virtually certain to be of dynamical importance in the core. However, it is anticipated
that the novel procedure developed in the Appendix, in which the growth rate is
determined in terms of the basic-state and leading-order perturbation variables, may
be generalized and used to solve the problem of stability of a cylindrical plume in the
presence of rotation and}or magnetic fields. Efforts are underway to solve these
problems.

Another shortcoming of the present study, as well as those in Part 1 and Part 2, is
that the composition in the plume is uniform with a sharp discontinuity at an interface.
A more realistic situation is that in which the composition varies continuously with
radius. It may be possible to represent the solution of that more realistic problem as
a convolution involving the solution presented in this paper.

This work was supported in part by grants INT-9412211 and EAR-9417481 from the
National Science Foundation. This is publication 387 of the Geophysical Fluid
Dynamics Institute, Florida State University, Tallahassee, Florida.
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Appendix. Determination of the solvability condition

In this Appendix, a solvability condition for the first-order stability problem is
found. The relevant equations, governing the first-order variables, are
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These equations are subject to conditions (2.32), (2.33), (2.37), with subscripts 1
where appropriate, and homogeneous versions of (2.34) and (2.35) :

at s¯ s
!

dp
"
}ds and dT

"
}ds are continuous. (A 12)

Also, condition (2.36) requires that

Ω
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). (A 13)

We wish to exploit condition (A 13) to obtain an expression for Ω
#
in terms of the

leading-order and basic-state variables. We begin by considering the horizontal
momentum equations (A 1) and (A 2), which form a coupled set for u

"
and �

"
in terms

of p
"
, Ω

"
, u

!
, �

!
and wa . This set may be uncoupled by adding and subtracting them.

Dividing the result by s# yields
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where the operator L is defined by (2.30). The equation with the upper sign has
homogeneous modes I
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Note that G³ is a Greens’ function; it satisfies the following jump conditions:

©G³ª¯ 0 and ©dG³}dsª¯ 1. (A 17)
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We may integrate the left-hand side integral of (A 15) by parts. Using continuity
conditions (A 12) and noting that G³ satisfies the homogeneous operator, we have

u
"
(s

!
)³�

"
(s

!
)¯&

¢

!

[F
u
(s)³F

v
(s)]G³(s ; s

!
)

s

s
!

ds. (A 18)

We have made use of (A 17) in writing (A 18). Adding the two versions of (A 18) and
using (A 13), we obtain

iu
"
¯Ω

#
¯

i

2&
¢

!

[(F
u
­F

v
)G

+
­(F

u
®F

v
)G

−
]
s

s
!

ds. (A 19)

Combining (3.8), (3.9), (A 6) and (A 7) we have that

F
u
³F

v
¯ ns³q 9 dds

(syqp
"
)­Ω{

"

d

ds
(syqV ): , (A 20)

where

V¯ s
!
3
$

j="

B
j
R

j
(A 21)

and B
j

and R
j

are given in (3.10) and (3.11). Note that V is closely related to �
!
:

compare (A 21) with (3.9).
Substituting (A 20) into (A 19) and integrating by parts, we have

Ω
#
¯®in&

¢

!
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"
H
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s

s
!

ds®n&
¢

!

9iΩ{
"
H
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®
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2

dwa
ds

(G
+
­G

−
):V s

s
!

ds, (A 22)

where

H
n
(s ; s

!
)¯

1

2s 9s−q
d(s"+qG

+
)

ds
­sq

d(s"−qG
−
)

ds :¯ ns
! (K!

q
(ns

!
) I

q
(ns)

I!
q
(ns

!
)K

q
(ns)

. (A 23)

Note that H
n

satisfies the following jump conditions:

©H
n
ª¯ 1 and ©dH

n
}dsª¯ 0. (A 24)

To make further progress, we must be able to write the integral of p
"
H

n
appearing

in (A 22) in terms of leading-order and basic-state variables. We begin this procedure
by forming L#(A 4)­(A 4)­(A 3)­L(A 5), which yields a sixth-order non-homog-
eneous ordinary differential equation for p

"
:

L$(p
"
)­L(p

"
)­n#p

"
¯F

tot
, (A 25)

where
F
tot

¯L#(F
p
)­F

p
­F

w
­L(F

T
). (A 26)

Note that the homogeneous modes for (A 25) are I
q
(ξ

j
s) and K

q
(ξ

j
s) where ξ

j
is defined

by (3.12).
Next, consider the expression

Q¯Q
n
®3

$

j="

n#Q
j

3n#­2µ
j

, (A 27)

where

²Q
n
,Q

j
´¯&

¢

!

F
tot

(s) ²H
n
(s ; s

!
),H

j
(s ; s

!
)´

s

s
!

ds (A 28)

and the functions H
j
are given by (3.22). Note that H

j
obey the jump conditions (A 24).



The stability of �ertical double-diffusi�e interfaces. Part 3 65

It is clear from (A 8)–(A 10) and (A 26)–(A 28) that Q is known in terms of zeroth-
order variables. It remains to show that the integral involving p

"
which appears in

(A 22) can be expressed in terms of Q. To begin this process, substitute for F
tot

in (A 28)
using (A 26) and integrate by parts. The results may be expressed as

Q
n
¯ n#&

¢

!

p
"
(s)H

n
(s ; s

!
)

s

s
!

ds­J
n
(N

n
) (A 29)

and
Q

j
¯ J

j
(N

j
) (A 30)

where

Jγ( f )¯
dHγ

ds
(s

!
)© fª®Hγ(s

!
­)-df

ds.®
df

ds
(s

!
®) (A 31)

for γ¯ n, j,
N

n
¯L#(p

"
)­p

"
(A 32)

and
N
j
¯L#(p

"
)­µ

j
L(p

"
)­(1­µ#

j
) p

"
. (A 33)

Note that the jump factor (A 31) reduces to

Jγ( f )¯®
df

ds
(s

!
) (A 34)

if the function f and its first derivative are continuous at s¯ s
!
, as is the case, for

example, for any first-order variable.
The integrals disappear from (A 30) by virtue of (3.13), leaving only the desired

integral in (A 29). At this point the solution scheme appears to be in trouble due to the
occurrence of the first-order variable p

"
in the jump terms. However, these terms can

be shown to be identically zero, as follows. Using (A 3) and (A 5), the N simplify to

N
n
¯F

n
­p

"
­w

"
(A 35)

and
N
j
¯F

j
­(1­µ#

j
) p

"
­w

"
­µ

j
T
"
, (A 36)

where F
n
¯L(F

p
)­F

T
(A 37)

and
F
j
¯L(F

p
)­µ

j
F
p
­F

T
. (A 38)

Now (A 27), (A 29), (A 30), (A 35) and (A 36) may be combined to yield
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s

s
!
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!
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)

3n#­2µ
j

®1:dp
"
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). (A 39)

By virtue of (1:B 29) the coefficients of all first-order terms in (A 39) disappear.
Combining the simplified (A 39) with (A 22), we have
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¯®n&
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!
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(A 40)

At this point we have an expression for Ω
#
in terms of leading-order variables, with

Q given by (A 27) and (A 28) and F
tot

given by (A 26). Substituting these expressions
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into (A 40) and integrating by parts, we have the somewhat simpler expression (i.e. not
containing the jump operators) given by (3.16). In writing (3.16) we have made use of
(A 11), (A 21) and (3.11), plus

G
+
­G

−
¯

2

n#
0q#R

n

s
®

dH
n

ds 1 , (A 41)

which may be verified using standard formulas.
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